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Abstract. A Peierls–Hubbard Hamiltonian suitable for the description of polyacetylene
electronic structure is studied. We employ the Lanczos method to calculate the ground-state
properties and single-particle spectral density functions appropriate for the description of the
photoemission and the inverse photoemission spectra.

The data obtained confirm that the dimerized polyacetylene is more stable than an
undimerized one and elucidate how the Coulomb and the electron–phonon interactions open
up a charge-transfer gap near the Fermi level. In particular we found that the value of the gap
increases when the electron–phonon interaction is switched on.

1. Introduction

Polyacetylene (PA) is one of the most famous polymers. This is due in part to the fact that
PA is the simplest conjugated organic polymer, and thus a comparison of various theoretical
approaches with experiment is relatively easy [1]. The shortcomings of applying simple
theoretical approaches like local density approximation or Hartree–Fock approximation to
systems like PA are understood relatively well [2]. In order to obtain correct values of the
band gaps, quasiparticles, and even simple ground-state properties it is necessary to include
electron correlation effects, i.e. all the effects of electron–electron interactions which are
not included in the Hartree–Fock calculations. Unfortunately, such calculations for infinite
systems are difficult and costly (compare [2–6]).

The first good qualityab initio correlation calculations for infinite one-dimensional PA
were reported in [7]. The dependence of the ground-state energy on the dimerization was
analysed. It was claimed that the correlation effects are responsible for the observed large
dimerization. The dimerization problem was also studied (using the Lanczos method) in
references [8, 9]. Then the calculation of the charge-transfer gap was performed in [9].

On the other hand, the phase diagram of extended Hubbard-type one-dimensional models
well suitable for the description of PA was investigated using various techniques such as
the Hartree–Fock functional integral formalism, quantum Monte Carlo simulation, and the
renormalization group and Lanczos methods [10–17].

In the present short note we would like to supplement all of the theoretical data on PA by
computation of spectral density functions. In addition we will pay attention to the problem of
the nature of the charge-transfer gap and to the problem of dimerization. Here the correlation
effects must be treated properly—most of the simple analytical approximations used for these
purposes are simply uncontrollable. Therefore we will use the exact (no approximations)
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Lanczos method applied to small clusters. Such an approach yields deviations from infinite-
system data but the deviations are well understood. That is, the trends in finite-size effects
can be inferred from calculations done on several clusters of different sizes.

Let us now consider, in detail, the problem of which model is appropriate for the proper
description of PA. PA is a linear polymer which consists of CH units forming a quasi-
one-dimensional lattice. Three of the four carbon valence electrons participate inσ -bonds,
while one electron participates in theπ -bond (sp2 hybridization). Electronic energies of
σ -bonds are at relatively deep levels. The interesting low-energy physical behaviour of
PA can be accounted for by taking into account the effective Hamiltonian describing the
π -electrons alone. The competition between the lowering of the electronic energy caused
the formation of a conjugated single–double-bond structure and the increase of the elastic
energy of the polymer (caused by distortion) leads to an equilibrium bond-length modulation
(dimerization). The simplest Hamiltonian capable of modelling this situation is the Su–
Schrieffer–Heeger (SSH) Hamiltonian [18]. This is a model based on an effective free
electron plus ‘static’ phonons plus the possibility of dimerization. Correlation effects are
non-existent. When the SSH model is extended (by adding Coulomb interactions between
electrons) we obtain the Peierls Hubbard Hamiltonian [8, 19]:

H =
∑
l,σ

tl,l+1(c
+
l,σ cl+1,σ + HC) + U

∑
l

nl,↑nl,↓ + V
∑

l

nlnl+1 + 2NKζ 2 − µ
∑

l

nl .

(1)

Herec+
l,σ andcl,σ are fermion creation and annihilation operators of theπ -electron with

spinσ on sitel, andnl,σ = c+
l,σ cl,σ is the corresponding particle number operator. The first

term of (1) represents kinetic energy of the electrons, i.e., the hopping between neighbouring
sites (tl,l+1 = t1 or t2; t1 = t0+2αζ or t2 = t0−2αζ are the hopping integrals for double and
singleπ -bonds). The second term(U) is the on-site Coulomb repulsion while the third one
(V ) corresponds to nearest-neighbour Coulomb interaction. The fourth term describes the
elastic energy:ζ is dimerization andK, α are electron–phonon constants. The last term is
the chemical potential. The Hamiltonian (1) is invariant under particle–hole transformation
for µ = 2V + U/2, i.e. for a half-filled band. This is true for the undimerized case, i.e. for
ζ = 0. The values of the(t, U, V ) parameters determine the type of the ground state
[8, 15, 17]. Three special cases,t � U, V (free fermionic),U � t, V (Mott–Hubbard) and
V � t, U (the charge-density wave), are of special interest. ForU � t the ground state has
singly occupied sites and Hamiltonian (1) reduces to an effective antiferromagnetic (AFM)
Heisenberg Hamiltonian. ForV � t, U the ground state has alternate empty and doubly
occupied sites [20]. It was found that on theU–V diagram charge-density-wave (CDW)
and spin-density-wave (SDW) phases are separated by the transition lineU = 2V [17] on
which the amplitude of dimerization reaches a maximum [8].

2. Computational details

We study the clusters ofN = 6, 8, 10 sites. A crucial point is the selection of the values
of the parameters for the Hamiltonian and choosing the appropriate boundary conditions.
Here we uset0 = −2.5 eV, α = 40 meV pm−1, U = −6.25 eV, V = U/2 = 3.15 eV
and the experimental valueζ = 2.6 pm [21] (see table 1; set V parameters). In table 1 we
present other sets of parameters which merit some additional study.

Some comments on table 1 are appropriate at this point. The values of the parameters
entering the model Hamiltonian (1) are not precisely known for PA. For dimerization we can
take the experimental valueξ = 2.6 pm [21]. If one wished to accept the parameters from
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Table 1. The sets of model parameters.

Set: I II III IV V

t1 (eV) −2.5 −2.708 −2.5 −2.5 −2.708
t2 (eV) −2.5 −2.292 −2.5 −2.5 −2.292

U (eV) 0.0 0.0 6.25 6.25 6.25
V (eV) 0.0 0.0 0.0 3.125 3.125

ζ (pm) 0.0 2.6 0.0 0.0 2.6
µ (eV) 0.0 0.0 3.125 9.375 9.375

K (10−3 eV pm−1) 0.0 3.132 0.0 0.0 3.132

references [1, 7] then:t0 = −2.5 eV andα = 40 meV pm−1 giving t1 = −2.708 eV,
t2 = −2.292 eV. The electron–electron interactions are described byU = 11.5 eV,
V = 2.4 eV. The very large value ofU (U > −4.0t0) is usually not accepted as the
correct one for PA. Experimentalists favour a much lower value:−1.5t0 < U < −3.5t0
[22–24], arguing that large values ofU [7] are bare values, and that the effectiveU that
one should use is much lower (probably due to some screening effects). ForV the estimate
is −0.5t0 < V < −1.5t0 [22, 23]. Therefore, in the following, we will consider as the
most probable the parametersU = −2.5t0 = 6.25 eV, α = 40 meV pm−1 [22, 23, 24]
and V = U/2 = 3.125 eV. Note that the value ofV set arbitrarily to one half ofU
corresponds to maximal possible dimerization, as found in small-cluster calculations [8].
These are the set V parameters. Set IV is identical to set V with the exception that the
dimerization and electron–phonon interaction are omitted. Set III is a simplified version of
set IV (without V -interaction). We consider these model parameters following reference
[24]. The parameters of set II are simply SSH Hamiltonian parameters [18]. Finally the
free-electron case—set I—corresponds to set II when the dimerization and electron–phonon
interaction are switched off.

The importance of imposing the proper boundary conditions in small-cluster calculations
was recognized by several authors [8, 15, 25]. That is, there is a subtle difference between
the chains withN = 4m andN = 4m + 2 sites. In order to approximate the infinite chain
by finite rings with the states at the Fermi level, cyclic boundary conditions are the most
suitable in the first case, whereas anticyclic boundary conditions have to be imposed in the
second one. More detailed discussion is given in references [9, 15, 25].

Therefore we use modified periodic boundary conditions (MPBC), i.e., the true periodic
boundary conditions (PBC) are appropriate for rings with eight sites while for rings with
six or ten sites antiperiodic boundary conditions (ABC) are appropriate [8, 9, 15, 25]. Note
that for PBC we have usedtN,N+1 = tN,1 = t2 andVN,N+1 = VN,1 = V and for ABC the
sign of the hopping integral is changed:tN,N+1 = tN,1 = −t2 [9].

The Lanczos method is an excellent one for obtaining low-lying eigenvalues and ground-
state properties for a small cluster. It is described in detail in numerous papers and textbooks
[20, 26–29]. The Lanczos method allows for the computation of spectral density functions
by the method of continued-fraction expansion [20, 30–32].

For small clusters ofN = 6, 8, 10 sites the actual computations were fast and could be
completed on personal computers or small work-stations. Applying the Lanczos method we
calculate:
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(i) the ground stateEN
0 and lowest excited states;

(ii) the occupations numbers〈nl,σ 〉;
(iii) the spin–spin correlation functions〈Sz

l S
z
l 〉;

(iv) the single-particle densities of states for photoemission and inverse photoemission.

Considering the momentum-integrated one-particle spectral density function, we define

NA(ω) = 1

N

∑
l,n,σ

|〈ψN+1
n |c+

l,σ |ψN
0 〉|2δ(ω − (EN+1

n − EN
0 )) (2)

(corresponding to the addition of an electron to a half-filled system or to inverse
photoemission) and

NE(ω) = 1

N

∑
l,n,σ

|〈ψN−1
n |cl,σ |ψN

0 〉|2δ(ω − (EN−1
n − EN

0 )) (3)

(corresponding to the removal of an electron from a half-filled system or to photoemission).
Here EN

n and |ψN
n 〉 are thenth excited eigenvalue and eigenvector of theN -site system

respectively;n = 0 denotes the ground state.
The one-particle spectral functionNE(ω) connected with photoemission andNA(ω)

connected with inverse photoemission can be related to the following Green’s functions [2]:

GE
l,σ (ω) = 〈ψN

0 |c+
l,σ

1

ω + EN
0 − H + iη

cl,σ |ψN
0 〉 (4)

GA
l,σ (ω) = 〈ψN

0 |cl,σ

1

ω + EN
0 − H + iη

c+
l,σ |ψN

0 〉. (5)

The relation between total density of statesNA
σ (ω) andGA

l,σ (ω) is easily obtained as [29]

NA(ω) =
∑

σ

NA
σ (ω) (6)

where

NA
σ (ω) = 1

N

∑
l,n

|〈ψN+1
n |c+

l,σ |ψN
0 〉|2δ(ω − (EN+1

n − EN
0 )) = − 1

πN
lim
η→0

N∑
l=1

Im GA
l,σ (ω).

(7)

Hereη is a small positive number. (In practice, during the following computations, we
setη = 0.1 eV. This gives an artificial width to the delta functions.) The chemical potential
µ can be defined in a standard way or equivalently as follows:NA(ω) = 0 for ω < µ;
NE(−ω) = 0 for ω > µ.

3. Results

3.1. The ground state

To give an example of the results obtained we present table 2.
According to the theorem given by Lieb and Mattis [33], in one dimension the total

spin of the ground-state wave function of an infinite chain is zero. This is in agreement
with our results. The charge excitation gap for PA can be obtained from small-cluster data
as [9, 15, 20, 34]

Egap = lim
N→∞

EN
gap (8)

EN
gap = EN

0 (n↑, n↓ + 1) − 2EN
0 (n↑, n↓) + EN

0 (n↑, n↓ − 1) (9)
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Table 2. Numerical results forN = 10.

Set: I II III IV V

EN
0 (eV) −30.7627 −31.269 −50.135 −86.029 −86.600

〈|nl,σ |〉 0.5 0.5 0.5 0.5 0.5

〈|Sz
l S

z
l |〉 0.358 0.375 0.535 0.485 0.436

〈|S2
total |〉 0.0 0.0 0.0 0.0 0.0

whereEN
0 (n↑, n↓), EN

0 (n↑, n↓ + 1), EN
0 (n↑, n↓ − 1) are ground-state energies for systems

with (n↑, n↓), (n↑, n↓ + 1) and(n↑, n↓ − 1) up and down electrons, respectively.
Egap is an essential quantity for the indication of metal–insulator phase transition.

A system is insulating if the gap is finite. In our case, the charge excitation gaps,
EN

gap, calculated using set V parameters are:E6
gap = 3.62 eV, E8

gap = 3.09 eV and
E10

gap = 2.77 eV. It is well known [9, 15, 25, 35] thatEN
gap varies roughly linearly with 1/N ,

so extrapolation to an infinite system is possible [20, 36]. (Better extrapolation schemes than
the 1/N linear dependence do exist when the data for many differentN = 6, 8, 10, 12, . . .
are available—compare [15].) We have obtained the valueEgap = 1.55 eV.

For set I/set II parameters the ground state is metallic/semimetallic (Egap ' 0,
〈|S2

i |〉 = 0.375). The ground-state energy is [1, 18]

E0(ζ ) = −N
4t0

π
E(1 − Z2) + 4t0Z

2

2α2
(10)

whereE(1 − Z2) is the complete elliptic integral of the second kind andZ = 2αζ/t0. For
set III (the Hubbard Hamiltonian) an exact solution in one dimension (based on the Bethe
ansatz) was found by Lieb and Wu [34]. The ground-state energy is

E0 = −4
∫ ∞

0

J0(ω)J1(ω)

ω(1 + exp(0.5ωU))
dω (11)

whereJ0(ω) andJ1(ω) are Bessel functions. For set IV (whenU = 2V ), the system is in
the SDW phase [19, 8, 15] and the ground-state energy in second-order perturbation theory
is [37]

EN
0 ' −N

(
V + 4t2 ln 2

U − V

)
. (12)

At half-filling for very large U there should be no doubly occupied sites. An effective
Hamiltonian for PA becomes in this case the Hamiltonian for the Heisenberg antiferromagnet
with the exchange integralJeff = t2/(U − V ) [20] (Jeff = 4 eV for set IV). For set V the
ground-state energy should have the following expansion [38]:

EN
0 = e0 +

[
e1 + e2 ln

(
4

|z|
)

+ e3 ln2

(
4

|z|
)]

z2 (13)

valid for a small dimerization only. For 4e−z−πt/V 6 z � 1 the parameterz is related to
the dimerization by

ζ(z) =
[
t + 2V

π
− V

π
ln

(
4

|z|
)]

z

2α
. (14)

The coefficientsei are analytic functions of the model parameters (see [38], and also
appendix A). Our numerical results for all sets of parameters agree within a few per cent
with theoretical values following from equations (10)–(13). An additional important finding
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is that the ground-state energy for a dimerized system is lower than that for a non-dimerized
one, which confirms the results of references [7–9]. Let us recall that the driving force for
dimerization is provided by electron correlations. The stronger the correlations (the larger
U ), the more stable the dimerized state. We also recall that at the lineV = U/2 the
dimerization is at its maximum [8].

Figure 1. The one-particle spectral functionN(ω) = NE(−ω) + NA(ω) for a 10-site
cluster expressed in arbitrary units (set I parameters, ABC). The energy is measured with
respect to the ground-state energyE10

0 . The chemical potentialµ = 0. The peak labels
corresponding to differentk-values were assigned using formula (17). Other peaks correspond
to ω±

1 = ±2ω−3π/10, ω
±
2 = ±(ω−3π/10 + ω−π/10), ω

±
3 = ±3ω−3π/10.

3.2. The one-particle density function

For the sake of completeness, we start by calculating the one-particle spectral density
functionN(ω) = NA(ω)+NE(−ω) using set I parameters. (This will turn out to be useful
when we discuss spectral density functions in the Hartree–Fock approximation for the other
sets.) In figure 1 we showN(ω) versusω (10-site cluster, ABC boundary conditions). This
function has a periodic structure. For set I parameters

H = t0
∑
l,σ

(c+
l,σ cl+1,σ + HC). (15)

The kinetic energy is diagonal in the momentum representation [2]:

H =
∑
k,σ

Ekc
+
k,σ ck,σ (16)

where

Ek = 2t0 cosk (17)
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and the wave vectork = 2πj/N − φ/N ; j = −N/2, . . . , N/2. The phasesφ = 0 and
φ = π correspond to PBC and ABC, respectively. The Hamiltonian (15) describes the
system of non-interacting electrons for which the density of states for momentumq and for
ω is defined as [2]

NA
σ (q, ω) = − 1

π
lim
η→0

Im

(
〈ψN

0 |cq,σ

1

ω + EN
0 − H + iη

c+
q,σ |ψN

0 〉
)

(18)

NE
σ (q, ω) = 1

π
lim
η→0

Im

(
〈ψN

0 |c+
q,σ | 1

ω + EN
0 − H + iη

cq,σ |ψN
0 〉

)
. (19)

Using the identities

1 =
∑

k

|ψN+1
k 〉〈ψN+1

k | (20)

wherek denotes the wave vector and|ψN+1
k 〉 is the Bloch wave function and

δ(x) = lim
η→0

η2

π(x2 + η2)
(21)

we can convert equation (18) into the form

NA
σ (q, ω) =

∑
k

|〈ψN+1
k |c+

q,σ |ψN
0 〉|2δ(ω − (Ek − EN

0 )). (22)

In this case the local density of statesNA(ω) is

NA(ω) = 1

N

∑
q,k,σ

|〈ψN+1
k |c+

q,σ |ψN
0 〉|2δ(ω − (Ek − EN

0 ))

=
∑
k,σ

(1 − 〈nσ 〉)δ(ω − (Ek − EN
0 )) (23)

where〈nσ 〉 = (1/N)
∑

q〈nq,σ 〉. In the same way we obtainNE(ω). Because〈nσ 〉 = 0.5
the total density of statesN(ω) becomes

N(ω) = NA(ω) + NE(−ω) =
∑

k

[δ(ω − (Ek − EN
0 )) + δ(ω + (Ek − EN

0 ))]. (24)

If energy is measured with respect to the ground-state energy then the peaks of the spectral
function N(ω) are located at

ω = ±Ek. (25)

The negative and positive signs in (25) refer to valence and conduction bands.
For N = 10, from equation (17) we have obtained:ω = 0 eV for k = ±π/2,

ω = ±2.94 eV for k = ±3π/10 andk = ±7π/10, andω = ±4.76 eV for k = ±π/10 and
k = ±9π/10, where the signs± correspond toNA(ω) and NE(ω), respectively. This is
shown in figure 1. The one-particle spectrum has a symmetry with respect to the reflection
ω → (−ω). This is caused by particle–hole symmetry. Single-mode peaks are identified
by using labelsωk, that is: ω9π/10, ω7π/10, ωπ/2, ω3π/10.

Other peaks correspond toω±
1 = ±2ω−3π/10, ω

±
2 = ±(ω−3π/10 + ω−π/10), ω

±
3 =

±3ω−3π/10. It was shown in [39, 40] that the density of states becomes Gaussian in the
limit of infinite dimension. Looking at figure 1 we note the beginning of such a tendency.

For set II the only difference in comparison to the set I results is that we should replace
Ek with ED

k [1, 18]:

ED
k = [t2

1 + 2t1t2 cos(2k) + t2
2 ]1/2 (26)
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wheret1 = t0 + 2αζ, t2 = t0 − 2αζ . The spectral functionN(ω) is

N(ω) =
∑

k

[δ(ω − (ED
k − E

N,D
0 )) + δ(ω + (ED

k − E
N,D
0 ))] (27)

whereE
N,D
0 is the ground state in the case of dimerization. The positions of the peaks

for the N = 10 cluster are given by:ω = 2αζ = ±0.42 for k = −π/2, ω = ±2.94 for
k = ±3π/10 andk = ±7π/10, andω = ±4.76 for k = ±9π/10 andk = ±π/10.

Figure 2. The one-particle spectral functionN(ω) = NE(−ω) + NA(ω) for a 10-site cluster
expressed in arbitrary units (set II parameters, ABC). The chemical potential (defined as 0.5Egap)
is µ = 0.42 eV. We see aπ → π∗ charge-transfer-type gap corresponding to a transition from
a bondingω−-state to an antibondingω+-state. Note that the band width isW = 4t0.

The agreement of infinite-system values with the corresponding small-cluster data is
very good (figure 2). In the vicinity ofω = 0 we see a charge-transfer-type gap (labelled
π → π∗) corresponding to a transition from a bondingω−-state to an antibondingω+-
state [41, 42]. We find that dimerization opens the energy gap near the Fermi surface (the
Peierls transition). We can estimateEgap from figure 2 (E10

gap = ω+ − ω− = 0.84 eV).
Note thatE6

gap = E8
gap = E10

gap = 0.84 eV does not agree with the experimental value
E

exp
gap ≈ 1.8 eV [1, 43], which indicates that effective Hamiltonian (1) with set II parameters

does not describe the PA very well. We also see that large dominant structures at energies
|ω| < 5 − 6 eV correspond to the band widthW = 4t0 .

For set III parameters, equation (1) reduces to the form

H =
∑
l,σ

t0(c
+
l,σ cl+1,σ + HC) + U

∑
l

nl,↑nl,↓ − µ
∑

l

nl . (28)

In the Hartree–Fock (HF) approximation [2]

H '
∑
k,σ

(EN
k + U〈nσ 〉 − µ)c+

k,σ ck,σ . (29)
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The corresponding approximate Green’s function is of the form [2]

GHF,A
σ (k, ω) = 1

ω + EN
0 − Ek − U〈nσ 〉 − µ + iη

. (30)

The poles are located at

ω = Ek + U〈nσ 〉 − µ. (31)

As 〈nσ 〉 = 0.5 andµ = U/2, we have a situation like that for set I parameters.

Figure 3. The spectral functionN(ω) = NE(−ω) + NA(ω) for a 10-site cluster expressed in
arbitrary units (set III parameters, ABC). The chemical potentialµ = 1.18 eV. The peak labels
corresponding to differentk-values were assigned using the HF approximation (see formula (31)
and compare figure 1 assignments). The charge-transfer-type gap corresponds to a transition from
a bondingω−

0 -state to an antibondingω+
0 -state. The peakωh = −6.99 eV (highest intensity)

corresponds to promotion of an electron from a deep occupied to a shallow unoccupied level.
We can identify the lower Hubbard band (LHB) and the upper Hubbard band (UHB) separated
by the energy gapE10

gap = ω+
0 −ω−

0 = 2.36 eV' U/t . Some peaks belong to higher subbands.

Looking at figure 3, where not the approximate (corresponding to formula (31)) but the
computed (for the cluster)N(ω) is presented, we note the following.

(i) Coulomb interaction produces new states at aroundω ' ±U/2 = ±3.125 eV
corresponding to the lower hubbard band (LHB), the upper hubbard band (UHB) and to
higher bands. This result (for largeU ) is a simple reproduction of similar earlier results
(compare the numerical data of [44]).

(ii) The Coulomb interactionU opens a gap in the vicinity of Fermi energy. The gap
can be estimated by usingE10

gap = ω+
0 − ω−

0 = 2.36 ± 0.02 eV (see figure 3; compare
formula (31) and the discussion following figure 2).

(iii) There is a peak at the highest intensity:ωh = −6.99 eV. We note that the position
of this peak is independent of the system size. Attempting to interpretωh, we observe that
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the actual value ofωh roughly corresponds to excitation of an electron from the bottom
of the valence band to the lowest-lying level (degenerate) of the conduction band (the HF
approximation). This peak corresponds to a transition from thek = 0 to thek = ±π/2
level; it could be visible in x-ray photoemission (compare figure 6, later). This is a very
simple interpretation. However, some other many-particle process might be responsible for
ωh.

Let us return to the problem of the LHB and the UHB. It is well known that for finite
values ofU/t the spectrum of the one-dimensional Hubbard Hamiltonian is separated into
numerous disjoint subbands [12, 13]. (This holds also for largeU [44, 45].)

Figure 4. The spectral functionN(ω) = NE(−ω) + NA(ω) for a 10-site cluster expressed in
arbitrary units (set IV parameters, ABC). The chemical potentialµ = 0.92 eV. The intersite
Coulomb interaction removes some degeneracies in the LHB and the UHB (splitting peaks for
ω−7π/10, ω−9π/10, ω−3π/10, ω−π/10; compare figure 4 with figure 3) and moves the UHB (LHB)
to higher (lower) energies. The charge-transfer-type gap corresponds to a transition from a
bondingω−

0 -state to an antibondingω+
0 -state. The peakωh = −8.57 eV (highest intensity) is

an analogue of theωh-peak from figure 3.

If El is the centre of gravity of thelth subband then the difference between two adjacent
Els is U . To describe the motion of electrons in such a subband we define projection
operatorsPl . Pl projects out from a many-electron state particular configurations each
of which containsl doubly occupied sites. Using a canonical transformation [46] the
decomposed Hamiltonian is

H =
(∑

l

PlH
∑

l

Pl

)
= H0 + H1 (32)

H0 =
∑
l=0

PlHPl (33)
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Figure 5. The spectral functionN(ω) = NE(−ω) + NA(ω) for a 10-site cluster expressed
in arbitrary units (set V parameters, ABC). The chemical potentialµ = 1.41 eV. The peak
ωh = −6.44 eV (highest intensity) is an analogue of theωh-peaks from figures 3, 4. We can
see aπ → π∗ charge-transfer-type gap corresponding to a transition from a bondingω−-state
to an antibondingω+-state (E10

gap = 2.82 eV).

H1 =
∑
l=0

Pl+1HPl +
∑
l=0

Pl−1HPl. (34)

The termsPl+1HPl (Pl−1HPl) represent interband hopping from thelth to the (l + 1)th
((l − 1)th) subband. The effective HamiltonianPlHPl describes the dynamical properties
of an electron within a singlelth subband.

On figure 3 we can identity: the LHB, the UHB, and some states which correspond
to the next higher subband, i.e.,P0HP0, P1HP1 and P2HP2. The subband centres are:
E0 ' −U/2, E1 ' U/2, E2 ' ±(E1 + U/2), respectively.

The dominant peak in the LHB (labelledωh) corresponds to promotion of an electron
from deep occupied to unoccupied levels.

For set IV parameters the Hamiltonian (1) becomes the extended Hubbard Hamiltonian.
The corresponding density of statesN(ω) is shown in figure 4.

When one makes a comparison with figure 3, one can notice the following features.

(i) The intersite Coulomb interaction removes some degeneracies in the LHB and UHB
(splitting peaks forωπ/10, ω3π/10, ω7π/10, ω9π/10).

(ii) Peakωh shifts to lower energies (−8.57 eV). The interpretation ofωh is identical to
that in the case of the set III parameters model (see figure 6, later). It cannot be excluded
that the modeωh may have some connection with the dimerization (the Peierls transition)
(compare figure 6, later).

(iii) The UHB (LHB) moves a little to higher (lower) energies. The value of the shift
depends onk (maximal fork ' π andk ' 0, minimal fork ' π/2).
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Figure 6. Valence band and conduction band energy levels in the HF approximation for an
infinite system versus momentum. The actual values which would correspond to a 10-site
system with antiperiodic boundary conditions are indicated as diamonds. (a) Upper panel. The
model with set III parameters. The exact value ofωh = −6.99 eV for a 10-site cluster with
ABC roughly corresponds to the excitation from the deepest (k = 0) valence band level to the
lowest (k = ±π/2) conduction band levels (−7.7 eV in the HF approximation). (b) Lower
panel. The model with set V parameters. The exact value ofωh = −6.44 eV for a 10-site
cluster with ABC roughly corresponds to the excitation from the deepest (k = 0) valence band
level to the lowest (k = ±π/2) conduction band levels (−7.06 eV in the HF approximation).
The momentum axis is in the same units as the one for set III parameters (to make clear the
Peierls transition from a single-unit undimerized chain to the double-unit dimerized one).
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(iv) Egap is smaller (E10
gap = ω+

0 − ω−
0 = 1.84± 0.02 eV).

These facts may be understood already at the level of HF approximation. Namely:

HHF =
∑
k,σ

(
EN

k + U〈nσ 〉 − µ − Vk

2
Pl,l+1

)
c+
k,σ ck,σ (35)

wherePl,l+1 is the single-particle density matrix defined asPl,l+1 = 〈c+
l cl+1〉 and Vk is

the Fourier transform ofV . The term(Vk/2)Pl,l+1 can be included in an effective hopping
integral [19] t eff

l,l+1 = tl,l+1 − 0.5V Pl+1,l leading to a model Hamiltonian like that described
by equation (29) (the HF approximation, and set-III-type parameters corresponding to set
IV parameters).

If the effective hopping integral is larger thantl,l+1 (absolute values) then the energy of
the excited states increases.

Figure 5 shows the density of states for set V (Coulomb interaction+ dimerization).
We observe that:

(i) there is a large peak at the bottom of the LHB at the energyω = −6.44 eV' U of
the same origin as those for the models with set III and set IV parameters (figure 6);

(ii) the intensity of the states for|ω| > 6 eV is smaller than that corresponding to the
cluster with set IV parameters;

(iii) the value E10
gap is bigger (E10

gap = ω+
0 − ω−

0 = 2.82 eV); the estimated value of
Egap, using the valuesE6

gap, E8
gap and E10

gap, is found to beEgap = 1.55 eV (set V—
realistic parameters); the value of 1.55 eV is consistent within the estimation error with the
experimental value ofEexp

gap.

These facts suggest that dimerization strongly influences the one-particle spectral
function N(ω) (compare figure 5 and figure 4).

4. Summary

In this work we studied the Peierls Hubbard Hamiltonian for different sets of Hamiltonian
parameters. We used the Lanczos method to calculate the ground-state properties and the
single-particle spectral functionN(ω). The analysis of the results leads to the following
conclusions.

For all clusters the ground-state energy of the dimerized state is lower than the one
obtained for the non-dimerized state.

From figures 1–5 or from the experimental data we can estimateEgap. This is a very
important fact because sometimes the exact solutions for Hamiltonian (1) are lacking and
the computation ofEgap may prove difficult.

The Coulomb(U, V ) and the electron–phonon interaction open a gap near the Fermi
level. The estimated value ofEgap is 1.55 eV, which is close to the experimental value.

The Coulomb interaction produces new states as shown in figures 3 and 4. These states
correspond to the UHB, the LHB and higher bands.

The electron–phonon interaction changes the spectrum:

(i) the value ofEgap increases (the increase is independent of the system size);
(ii) the intensities of the states for|ω| > 6 eV decrease with respect to analogous

intensities for clusters with set III or set IV parameters;
(iii) for set III–set V parameters we observe the intense peak labelledωh (at around

ω ' U ) which corresponds to electron transition from occupied to unoccupied levels.
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Let us note that many of the facts mentioned above may be already understood at the
level of the HF approximation.
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Appendix A

For set II parameters the ground-state energy is [1, 18]

EN
0 (ζ ) = −N

4t0

π
E(1 − Z2) + 4t0Z

2

2α2
(A1)

whereE(1 − Z2) is the complete elliptic integral of the second kind andZ = 2αζ/t0. For
small z, equation (A1) becomes

EN
0 (ζ ) = −4t0N

π
− 2t0N

π

[
ln

(
4

|z|
)

− 1

2

]
z2 + NKt0Z

2

2α2
. (A2)

When the SSH model is extended by adding Coulomb interactions between electrons, then
the change in the ground-state energy in the self-consistent-field approximation is [1]

1E = −2NV z2

π2
ln2

(
4

|z|
)

. (A3)

Adding (A3) to (A2) we obtain

EN
0 = −4t0N

π
+

[
Nt0

π
+ Kt2

0N

2α2
− 2t0N

π
ln

(
4

|z|
)

− 2NV

π2
ln2

(
4

|z|
)]

z2. (A4)

Comparing equation (A4) and equation (13) we obtain

e0 = −4t0N

π

e1 = Nt0

π
+ Kt2

0N

2α2

(A5)

e2 = −2t0N

π

e3 = −2NV

π2
.

(A6)

We note that within this approximation the ground-state energy does not depend onU .
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